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- ‘\
The Cauchy problem for the Korteweg-deVries equation (KdV for short)
qt(x,t) + qixx(x't) - 6q(x,t)q*(x,t) =0

(*)
q(x,0) = Q(x)~

.is solved classically under the single assumption

70+ xD o) ax < =

-for t > 0 via the so-called "inverse scattering method". This approach,

originating with Gardner, Greene, Kruskal, and Miura [9), relates the KdVv
equation to the one-dimensional Schrddinger equation:

(**) £ (x,K) + u(x)E(x,K) = K2£(x,k).

* By considering the effect on the scattering data associated to the

Schrddinger equation (**) when the potential u(x) evolves in t according
to the KAV equation (*), one obtains a linear evolution equation for the
scattering data. The inverse scattering method of solving (*) consists of
calculating the scattering data for the initial value Q(x), letting it evolve
to time t, and then recovering g(x,t) from the evolved scattering data.
Recently, P. Deift and E. Trubowitz [7) presented a new method for
solving the inverse scattering problem (obtaining the potential from its
scattering data). Our solution of the KAV initial value probliem uses this
approach to construct a classical solution,under the assumption stated above.
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SIGNIFICANCE AND EXPLANATION

|
|
|

The Korteweg-deVries equation (KdV for short) arises as an approximation
in many problems involving non-linear dispersive waves and has been exten-
sively studied in recent years [1,3-6,9,11-13,15-19,21-28]., One approach to
solving this equation in a more or less explicit fashion is the inverse
scattering method of Gardner, Greene, Kruskal, and Miura [9], which relates
the KAV equation to a one~parameter family of one-dimensional Schrddinger
operators. We solve the Cauchy problem for the KAV equation by this method,
using the inverse scattering theory of Deift and Trubowitz [7]. Previous
authors [5,6,9,22] have done this using Faddeev's version of inverse
scattering [8]; our approach constructs a classical solution under less
restrictive conditions on the initial data. 1In particular, no smoothness is
assumed. Some aspects of the asymptotic behavior of the solution are also

discussed.
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CLASSICAL SOLUTIONS OF THE KORTEWEG-deVRIES EQUATION
FOR NON-SMOOTH INITIAL DATA VIA INVERSE SCATTERING
Robert L. Sachs

1« Introduction.

In this paper, we construct classical solutions of the Cauchy problem for

the Korteweg-deVries (KdV for short) equation:
(9 * “xxx~ 629, = O t>0, x€ER
(*)
q{x,0) = Q(x)

via the inverse scattering method of Gardner, Greene, Kruskal, Miura, and
Zabusky (see [9,17]). This approach relies on the intimate connection between
the KdV equation and the one-dimensional Schr&dinger equation with potential
u(x):
(**) —£"(x,k) + u(x)E(x,k) = k2£(x,k).
More precisely, if one considers the one parameter family of Schrddinger
operators (parameterized by t) whose potentials satisfy the KdV equation,
then these operators are unitarily equivalent to one another. Moreover, by
considering the so-called scattering data associated to these operators, one
obtains a system of uncoupled, linear equations. The inverse scattering
method of solving the K4V equation consists of first calculating initial
values for the scattering data from the initial potential @(x), then solving
the linear equations for the evolution of the scattering data, and finally,

recovering the potential gq(x,t) at time t from its scattering data.

Sponsored by the United States Army under Contract No. DAAG29-80-C~0041. This
material is based upon work supported by he National Science Foundation under
Grant No. MCS-7927062, Mod. 1.
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The first two steps in this procedure are relatively straightforward;
most of the technical difficulty in applying the method arises in the process
of recovering the potential at time t. Previous authors, including Tanaka
{22) and Cohen-Murray [5), used t : inverse scattering theory of Faddeev (8]
to complete this step under suitable hypotheses on the initial data (involving
decay of several derivatives). In a later paper, Cohen-Murray [6] considered
initial data which was continuous with a piecewise continuous first deriv-
ative, Assuming a certain decay rate, she proved the existence of a smooth
solution. Our result does not assume a specific decay rate but rather
requires that the initial data belong to a weighted L1 space. We make no
assumptions on derivatives of the initial data. 1In recovering the potential
from its scattering data, we use the recent work of P. Deift and E. Trubowitz
{7) on the inverse scattering problem. One difference between this theory and
Faddeev's is that the so-called trace formula of [7] (see also Newell [19]))
expresses the potential itself directly in terms of the scattering data. In
this way, the solution g(x,t) of the KAV equation (*) and the solution

h(x,t) of the linear problem:

{(1.1)

h(x,0) = H(x)
are coﬁpared directly, where H(x) is related to the scattering data of
Q(x). Our analysis consists in large part of solving (1.1) in various

<0
' and L spaces and then using the link between h(x,t)

weighted, local L
and g({x,t) to extend these properties to g(x,t).
Several other approaches to the KAV initial value problem have been

developed besides the inverse scattering method used here. Saut and Temam

[21] used a parabolic regularization of the KAV equation to establish the

it




existence and uniqueness of solutions in the Hilbert spaces H® for

s » 2, Bona and Smith {[4) obtained existence, uniqueness, and continuous
dependence on initial data in #® for all integers s # 2 using a
regularizing term of order 3 (the so-called regularized long wavelength
equation). Bona and Scott {3], using non-linear interpolation theory,
extended this result to non-integer values of s. These results show that in
the Hilbert spaces Hs, the KdV evolution is not smoothing in the strong
sense but preserves the order of Lz—differentiability. Recently, Kato
[12,13], using the abstract theory of quasi-linear evolution equations, proved
the existence and weakly continuous dependence on initial data in HS, s =

0,1, and the weighted Sobolev spaces

HZr,r = H2r n LZ((1+x2)rdx)
and
s 2 2 . 2, 2bx
H™ n Lb, where Lb 2 L7 (e TdAx)

for b >0, s ? 0.

Kato also shows that in fact, for s > 3/2, an H°® solution belongs to

s+1

2
L ([o,T],Hloc

), which is a kind of smoothing effect. Other papers on the
Cauchy problem for the KAV equation on the line include [11,18,15-27). For a
nice survey article, see Miura [17].

Our result, as well as that of Cohen-Murray {5,6], exhibits an interplay
between smoothness and decay in the pointwise and weighted L1 senses, We

remark that these contrasts arise in the linear evolution equation (1.1) as

well as for the KdV equation.

R
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Before describing our results, we introduce some notation:

Lf(a) 1= LS([a,"'))

(1.2) = {u(x) : (1+|x])Tulx) ¢ LP((a,=))} )
xf t= n 1P(a)
a finite

LS will denote Lf((d”,w)). Note that xf is a Frchet space with the
obvious topology.
Our principal results are as follows:

Suppose the initial value Q(*) € L;. Then there exists a unique

solution g(x,t) of (*) with the properties: g
. 1 hd
(i) q(x,t) € xa-3/4-6 n X, for every t > 0 and § > 0
and t > q(°*,t) is continuous in this topology for t > 0.
r.s 1 o
(ii) 9.3 q(*,t) € X n X
t x a_3/4_6_(s+3r) a_(s+3rJ
2 2
(with continuity in t)
(iii) qi{x,t) > Q(x) as t + 0 . h

in x;_1_6 for every § > O.
As yet, we do not know how to prove that the solution constructed has the same
asymptotic behavior as x + - or as t * +# (modulo solitons) as the
solution of the linear problem (1.1), although we believe this to be true
(See [1}).
The basic results of inverse scattering theory, including sketches of the

approaches of Faddeev [{8) and Deift and Trubowitz [7), appear in Section 2

below. 1In Section 3, the link between the KdV equation and the Schrddinger

equation is described and the evolution of the scattering data given. Using
this evolution, the reconstruction of the potential by the Deift-Trubowitz

method is discussed in Section 4. Additional smoothness and decay properties

—4-




of the proposed solution are developed in Section 5, while Section 6 contains
the proof that our solution indeed satisfies the K4V equation.

It is a pleasure to acknowledge helpful conversations with Percy Deift
and Jerry Bona during the course of this work and the support of an A.M.S

i ' Postdoctoral Research Fellowship.
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2. Results From Inverse Scattering Theory.

In this section, we sketch the results of the theory of inverse

scattering for the one-dimensional Schrddinger equation [7,8] to be used in

studying the K4V initial value problem. Where feasible, the proofs of these

inverse method (8]; and the Deift-Trubowitz approach [7]. Our discussion is

for the reader's benefit and contains no new results.

results are described briefly. Our discussion is divided into three parts:

the definition of scattering data for the Schrddinger equation; Faddeev's

A. The Forward Problem: Defining the Scattering Data; Basic Properties,

Consider the Schrddinger equation

(*%) -£"(x,k) + w(x)E(x,k) = k2£(x,k)

on the real line - < x < # for X real and non-zero. Assuming that the

potential u(x) 1is real-valued and satisfies the condition:

(2.1) Put = 7+ [xDutx) |dx < =
50

z L1

| we construct the Jost solutions ft(x,k) of (**) as follows:

Solve the Volterra integral equations:

o [o2iK(y-x)_
m (x,k) =1 +£ [ ik ] u(y)m_(y,k)dy
(2.2)
~2ik(y-x)
' m_(x,k) =1+ [* [ 2“3??"“421] u(y)m_(y,k)dy
-0

for mt(x,k) and then define
(2.3) £,(x,k) = etlkxmt(x,k).

Condition (2.1) arises when estimating the terms in parentheses by

obtaining a bound independent of k. Then ft(x,k) satisfy the

Schrédinger equation (**) and have the asymptotic hehavior

IY"xlr




f+(x,k) ~ elkx as x > ¥
(2.4) ikx
f_(x.k) ~ e as X * -,

Since u({x) and Xk are real, f+(x,k) = ft(x,—k) are also solutions of

(**)., (2.4) implies f+(x,k) and f+(x,-k)
k# 0 (and similarly for f_) since
(£, (x,k), £ (x,-k)] = [£_(x,-k),f_(

Thus there are functions Tt(k)'Rt(k) defined

relations:
S E L s
ALY T (k) 4+ %7 YT
+ +
{2.5)
; R_(k)
f+(X1k) =mf_()(y-k) +T__6(_)

Taking Wronskians as above, we obtain:

2ik 2ik
T+(k) = T_(k) = [f+(X,k):f_(xrk)]

21kR (k)
_
T, (k)

A
]

(2.6) [f_(x,k)rf+(x;'k)]

2ikR_(k)
TT_ (k)

[f_(xl-k)lf+(xlk)]

Tt(k) is called the transmission coefficient;

coefficients. The scattering matrix, S(k),
T+(k) R (k)

(2.7) S(k) =

R.(kK)  T_(k)

and is well-defined for real k # O.

-7

are linearly independent for

x,k)] = 2ik.

for real, non-zero k by the

f+(x,k)

£_(x,K).

Rt(k) are the reflection

is given as:




l Lemma 2.1

The properties of the scattering matrix are summarized in the following:

(cef. Theorem 2.1 of [7)) The scattering matrix, S(k), has the

following properties:

(1)

(i1)

(1ii)

(iv)

(v)

—

S(k) 1is continuous for all real k # 0. Moreover, if

tal = fw (1 + |x|)2|u(x)|dx < @
L -

2
then S(k) 1is also continuocus at k = 0.
T,(k) = T_(k) = T(k)
T(k) =

-k); = R (=k
T(-k) Rt(k) t( )

T(k)R_(k) + R+(k)T(k) = 0;

|T(k)|2 + |R_(k)12

[}

|T(k)|2 + |R+(k)|2

= 1.

Thus |T(k}|, |Rt(k)| <1,
Moreover, S(k) 1is unitary.
T(k) extends meromorphically in the upper half-plane Im k > O.

T(k) has a finite number of simple poles at k = 181,"',iBn

where each Bj is a real, positive number; the residue of T(k)

at k = iBj is
i [T f+(x,18j)f_(x,18j)dx]-1.

—83,-8;,"',—83 are the eigenvalues (hound state energies) of
the Schrddinger operator. In Im k 2 0, T(k) is continuons
. 1 , .
away from 0,181,"',13n (1f u € L2, then T(k) 1is continuous

at k = 0 as well).




(vi) T(k) = 1 + O(1/k) as |k| *+ ®, Imk > O.

Ry (k) = o(1/k) as |k| > ©», k real.

Moreover, if u(x) has £ derivatives in L‘,

Rt<k) = o(iI:TJ as ‘kl * «, k real.

Also, if there are no eigenvalues,
2t

T{k) - 1 € H (Hardy space) F

and !T(k)| £ 1 for all Im k > 0.
(vii) [T(k) > 0 for all k * 0, Imk > O.
ik| € clrx)| as k= o;

1 .
If ui(x) € L2 then either:

€ C, € |T(k)|; IR <€ C 1
(a) o0 : Iy ]; | i(k)l , <
or
(b) T(k) = ak + o(k) as k =+ 0, Imk ? 0O;
Rt(k) = -1 + Ytk + o(k) as k * 0, k real.
Most of these properties are direct consequences of (2.5), (2.6) and the L

relation ft(x,k) = ft(x,-k). The remainder come from careful analysis and

the integral representations (derived from (2.2) and (2.5)):

2ikR (k) .
+ o -2iky
U d
00 {m e u(ym_(y,k)dy
2ikR_(k) ©  2iky
. —_— = k
(2.8) IS {m e u(v)m+(Y, Ydy
1 1 ©
TRy = 1 - 3Tk {w u(y)mi(y,k)dy.
2ikR (k)
Note that the functions ——;T%T—— look like Fourier transforms of the

potential wu({v), aside from the factors mt(y,k). For a full proof of Lemma

2.1, see [7]).

-G




In {7), it is also proved that mt(x,k) - 1, considered as functions of
k, belong to the Hardy space H2+. The Fourier transform of mt(x,k) -1
with respect to k plays an important role in inverse scattering theory.

As remarked in {8], the reflection coefficient R+(k) (or R_(k)) and
the values 151,"',8n are sufficient to uniquely determine the entire

scattering matrix S(k). Namely, since !T(k)]2 =1 - |R+(k)|2 for k real,

given R, (k) we know |T(k)| for Xk real. Multiplying by the product

n k-if, n k-iB,
I Ll to remove poles, we recover T(k) * 1 B by exponentiating
]

. k+iB, .
J=1 J J=1
the Cauchy integral for its logarithm. Then R_(k) 1is obtained via property
(iv) in Lemma 2.1 above.
Given R+(k) and B1,°'°,Bn, does this determine the potential u(x)?

It turns out that n additional pieces of information are needed. Typically,

one specifies the so-called norming constants, c.

e defined by

-1 2
(2.9 c, = £7(x,1i8, )dx.
) 3 _f: +7)
Given {R+(k)|k € R}, 81,'°',8n, and CyrtttiC which we call the

scattering data, the potential u(x) is unique (Levinson's Theorem). The

basic goal of inverse scattering theory is to describe how one obtains the

potential from its scattering data.

~10-




B. Faddeev's Inverse Scattering Theory.

We describe briefly cne method of constructing the potential from its

scattering data. This approach, due to Faddeev (8], is based on work of
Gel'fand and Levitan [10], Kay and Moses [14],’and Agranovich and Marchenko
[2). A linear integral equation for Bt(x,y), the Fourier transform of
mi(x,k) - 1, 1is solved and u(x) obtained by the relation:

(2.10) u(x) = - %; B,(x,0") = %; B_(x,07).

More precisely, define

n -28.
JY

I R+(k)e21kydk +2] cge .

-0 J=1

|-

(2.11) 9+(y) =

The integral equation for B+(x,y), y > 0, (often called the Gel'fand-

Levitan-Marchenko equation) is:

-]
(2.12) B (X,y) + @ (x+y) + [ @ (x+y+2)B (x,z)dz = O.
+ + o t +
A similar equation for B_(x,y), ¥y < O, holds where
® -9 n _ 28y
Q) =1 [TrReay v 2] e T,
—o j=1 )
(2.13)

~=1 2 .
c, = fm £7 (x,1B8.)dx.
J T 3
We remark that (2.10) follows from the Fourier transform version of (2.2),

while (2.12) is the Fourier transform of (2.5) when suitably expressed.

Since we will not use the Faddeev approach to the inverse scattering
problem, we do not discuss the solvability of the Gel'fand-Levitan-Marchenko
equation (2.12) or the properties of the potential obtained by this method.
The interested reader is referred to Faddeev (8] and Deift and Trubowitz [7]
for more information on this theory, and to the works of Gardner, Greene,
Kruskal, and Miura [9]), Tanaka (22], and Cohen-Murray [5,6] for its

application to the K4V initial value problem. We merely note that recovery of

-11-




the potential wu(x) via (2.10) does not provide a simple means of obtaining
pointwise estimates for u(x) in terms of R*(k), as it involves finding

B+(x, y) and differentiating.

C. The Deift-Trubowitz Inverse Scattering Theory.
Recently, P. Deift and E, Trubowitz [7] presented a rather different
approach to the inverse scattering problem. The key to their method is the

following 'trace formula' (see also Newell [19])

n
2ikx 2 2
m+(x,k)dk -4 Z chjf+(x,1Bj).

i=1
Note that (2.14) expresses the potential u(x) directly in terms of the

(2.14) ux) = 2% k R (k)e
oo +

squares of the Jost functions, so that the Schrddinger equation may be thought
of as a coupled system of second-order ordinary differential equations with
the singular boundary value m+(x,k) ~1 as x * +® given. This is the
basic idea in the Deift-Trubowitz approach. Carrying out this program
involves a number of technical questions, which we do not discuss in any
detail here. However, for the reader's benefit and as an orientation for
Section 5 below, we indicate the principal issues.

First of all, it is technically convenient to restrict attention to
potentials without bound states. In Section 3 of [7], a spectral version of
Crum's algorithm is used to add or subtract bound states. Thus the problem of
recovering potentials with bound states from the scattering data is in
principle reducible to the case of potentials without bound states. The
method of reduction is based on commutation ofthe operator A*A where A is

closed. In particular, suppose Q(x) 1is a potential with bound state

Schrddinger eigenvalues —85 < -B: N S -Bf . For -82 < -Bs let
g(x) be a positive solution of

d2 2
{2.15) (- -+ Q(x) + B7)g(x) = 0.

dx

-12-




Then it 1s not hard to verify that, if we define the closed operator A as

d =1
o = -
(2.16) Af (g ax g )f
* d2 2
then AA=-——+ Q(x) + B
2
dx
2 2
*
and AA = - a_ + Q(x) - ﬁi—— log g(x) + 82
2 2
dx dx
2
= - 9—§-+ P(x) + Bz.
dx

In [7] it is shown that a*A and AA* have the same spectrum except perhaps
for O. But —82, which was not an eigenvalue for the Schrédinger operator

with potential Q(x), is an eigenvalue for the same operator with potential

2
P(x; = Q({x) - 2 g—3-109 g(x) with §%§7 as eigenfunction. This is easily
dx
seen since AA*(iJ = ( d 424 ) L 0 Thus P(x) has an extra bound
g’ T ' i 9 A g

state eigenvalue -BZ. This describes how one adds a bound state; reversing
the procedure will remove one. In this process, the scattering data and
eigenfunctions are transformed in a nice way. With Q(°*), P(*) as above, the
transmission coefficients, reflection coefficients, norming constants and

eigenfunctions are related as follows:

Ve _ k+id
Tp(k) = %0if TQ(k)
_ _ k+iB
Rplk) = - 1358 RQ(k)
A'f+ Q(x,iBj)
(2.17) f+,P(x'lBj) = ——B—j:—a——— ’ j =1,***,n
B+Bj
CJ,P = 8—8. CJ,Q
]
B
Chet,p = 2(3)TQ(18)
where we choose g(x) above as
K\ g = t+(x,iB) + a f_(x,iB) with a > 0.
-13-
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Thus any -Bz < -Bi and any C,, , > O are attainable this way. Moreover, if
O(*) € L: so is P{(*) for all u ?» 1 and the associated reflection and
transmission coefficients have identical smoothness and decay properties. 1In
[7), it is also shown that n bound states may be added or removed in one
algebraic procedure. Thus there is no loss of generality in considering
potentials without bound states in the Deif t-Trubowitz scheme.
Now consider the Schrodinger egquation
( m%(x,k) + 2ikm!(x,k) = O(m_ ;R)m_(x,K)

(2.18)

m+(x,k) ~ 1 as x *

where Q(m+;R) is the right-hand side of (2.14) (with no bound states). Let

2ikx
e

n, (x,k) = my(x,k)

We have the equivalent system:

( -2ikx
ml(x,k) = e n+(X.k)
2ikx
1 - .
(2.19) ) n+(x,k) = O(m+,R)e m+(x,k)
m+ ~ 1 .
n ~ 0 as X > o,
+

In order to construct solutions to (2.19) on the Banach space
B= {(m,n)lsup (|m| + lnl) < “} a Lipschitz estimate on the vector field in
kER
(2.19) is established. Then a solution on semi-infinite interval [M,®) is
constructed, for M large, by a contraction mapping argument. Here the
following condition on R+(k) is used:
. 1 > i
(2.20) The function F+(y) = ;—f R+(k)e21kydy
-0

is absolutely continuous with:

f"lrlw)lu + Ivlz))dv< c(X) ¢® for all - ¢ X ¢ =,
X

-14-




Theorem 2.2. A matrix S(k) =

. L. . . . 1
We remark that this condition is rather natural when working with L2

potentials, since F;(y) and u(y) are quite similar (replace m, by 1

and ignore bound states}).
One of the main results of (7] is a sharp characterization theorem for

. 1 . o s s
potentials in Lz. In this class, necessary and sufficient conditions for a

1 . R
given set of data to be the scattering data of an L2 potential are given by

the following (Theorem 5.3 of [7]):

S11(k) S12(k)

S5, (k) Szz(k)

1 . . s s :
real potential u(x) € L2 without bound states if and only if conditions (i)-

is a scattering matrix a

(vii) of ILemma 2.1 hold and moreover (2.20) and its analogque for R_{(k) (as
in (2.13) above) hold.

While this theorem seems to suggest a nice class of potentials for our
problem, the dispersive nature of the KAV equation leads to poor decay of
solutions as x* *® for t > 0 [1,6). Therefore, as in Cohen-Murray (6], we
will reconstruct the solution for t > 0 from x = + to the left, using the
method sketched above. In this way, the estimate (2.17) is sufficient and no
condition on R_(k) 1is needed. Our potential will be constructed for every
finite x 1in this manner. One inherent difficulty is that the "left"
eigenfunction f_(x,k,t) may not be constructed directly for t > 0 because
of the poor decay of the potential as x * ©, Thus the algebraic procedure
for adding or removing bound states is no longer available and we are forced
to include bound state contributions in the Deift-Trubowitz scheme. As we

shall see, this is not a serious problem.

_15_




3. The Inverse Scattering Method for Solving the K3V Equation: Evolution

of the Scatterinag Data.

In a series of papers culminating in [9], Gardner, Greene, Kruskal, and
Miura studied the KAV equation
* - =
) e * Ixxx 64q, = O
They discovered a remarkable link between this non-linear evolution egquation

and the one-parameter family of Schrddinger operators
d2

(3.1) L{t) = -+ alx,t)
dx

where aq(x,t), the ‘'potential' in L(t), satisfies the KAV equation. If we

consider the scattering data associated to L{(t), namely

(3.2) S(t) = {R (k,t):k e R’} u {B.(t),c.(t)}.
+ ] ] j=1,***,n

then the time evolution of the scattering data, assuming a priori that it is

well-defined, is linear and given by the following well-known formulae:

Lemma 3.1. If g(x,t) evolves according to the K4V equation (*), the

scattering data S(t) given in 3.2 satisfy the equations:

. 4 o3
(1) a-t-R+(k,t) = 8ik R+(k,t)
) - a_ -
(3.3) (ii) It Bj(t) 0
d a3
(iii) Ecj(t) = 88jcj(t).

Remark. From the discussion of the previous section concerning the
determination of T(k) and R_(k) given R_(k) and 81'...'8n' it follows
that

d d .y 3
Y T(k,t) = 0 and It R_(k,t) = =Rik R_(k,t).

-16-
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We present a proof of Lemma 3.1 due to Tanaka [22], based on the operator
formalism introduced by Lax [16]), which is slightly different from the
original derivation in [9).

As noted by Lax [10), the K4V equation is equivalent to the operator

equation:
(3.4) 4 L(t) = [B,L) = BL LB
) dt TotRemd T
where the operator B is defined as follows (D = g;):
(3.5) B = -4D3 + 3qD + 3Dq.

In the literature, the skew-adjoint operator B is often called the
Lenard operator (after A. Lenard) and equation (3.4) is often referred to as a
lax pairing., Since B 1is formally skew-adjoint, it generates a unitary
group, so (3.4) implies that L(t) and L(0) are unitarily equivalent for
every t.

Considering the family of eigenvalue problems:

(3.6) L(E)E(x, Kk, t) = K2E(x,k, t)

and differentiating with respect to t, we find

(3.7) L(t)[£, - Bf] = k2(f, ~ Bf].
. . ikx
If f(x,k,t) is a Jost solution ft(x,k,t), where f+(x,k,t) ~ e as
x * # for every t fixed and f£_(x,k,t) ~ e-1kx as x * - for every

t fixed, then, analyzing the asymptotic behavior of ft - Bf, we find:

3

(f,), - BE_ -4ik £,

(3.8)
3

(€_), - Bf_ = 4ik>f_.

Je
Here we use the assumption g(x,t), qx(x,t) + 0 as |x| + o, t fixed.
Differentiating the relation (2.5) with respect to t and using (3.8), we

obtain (3.3)(i). (Alternatively, one can differentiate the Wronskians in

(2.6) and obtain this result.) By our previous remark, L(t) 1is unitarily

-17-




equivalent to L(0), thus Bj(t) = Bj(O). To obtain (3.3)(iii), we
differentiate f+(x,iBj,t) = uj(t)f_(x,iBj,t) and use (3.8).

An interpretation of the linear flow (3.3) in the context of completely
inteqrable Hamiltonian systems was given by Zakharov and Faddeev [28]).

Introducing a Hamiltonian structure, they show that the variables

[ poo) = -Z a0t - R_00]?)
R_(k)
otk) = ara(zrg—
(3.9) 1
P, =B
i
~ a1

| 95 = %nlicy a (7 |k=iBj)

form action-angle variables for the KAV Hamiltonian, 1In fact, they derive the

expression

n
(3.10) Hiul = 8 [° Xk P(k)dk - % py’ 2

0 2=1

which is egquivalent to (3.3) reexpressed in terms of R_(k), Zj, Bj (the

alternative set of scattering data using normalizations at x = ).

~18~
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bl

Theorem 4.1. Given ¢(x) €L

4. Recovering the Potential at Later Times.

Shifting our viewpoint somewhat, we now consider the linear flow on the
scattering data induced hy the nonlinear K34V equation. We show that under
suitable restrictions, the evolved scattering data is sufficiently "well-
behaved" to permit recovery of an associated potential by the inverse
scattering methods of Section 2 above. To this end, we make the following

definition:

(4.1) A function q(x,t) is called a generalized solution of the KJdV equation

(in the sense of inverse scattering theory) for all t 2? 0 if it is the

potential corresponding to the scattering data: 3
ikt 8t
(4.2) Ste) = {R (k,0)e x € R © {Bj,cj(o)e 15 = 1,004 ,n}
for every t 2 0.
To avoid confusion, the term "weak solution" will be used for solutions
in the sense of distributions and "generalized solution" will always refer to

the notion {(4.1). The chief result of this section is the following theorem.

1 . . . X
4’ there exists a unique generalized solution

(in the sense of inverse scattering) for t > 0 to the K4V equation

(*) Ay + Qyyy = 69y = O

XXX
with scattering data S(t) as in (4,2) where the initial values, S(0), are
the scattering data for Q(x).

The proof of the theorem consists of three steps, the first of which (our
Lemma 4.2) appears in (7] (Theorem 4.7 and Remark 4.5 thereafter).

Lemma 4.2, If Q(x) e L;, then the function H(x) defined by
(4.3) Hix) = C_M /e 3%5 R+(k,0)e2ikxd

-a
1 . . ..
iz also in Lg, where R+(k,0) is the reflection coefficient for Q(x)

k

and CM denotes the Cesaro mean,

~19-
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Remark. The trace formula (4.4) and its time-dependent generalization will

Lemma 4.3. The function h(x,t) defined by

For the sake of completeness, we sketch the proof appearing in [7].

Use the following version of the trace formula:

0(x) = H(x) + 2 J H(x+y)B(x,y)dy + | H(x+y)(B*B)(x,y)dy
0 0 .
(4.4)
n -28.x 2
- )} 4c.Be 3 m%(x,i8.)
oy 373 + j

where B(x,y) (resp. B*B) 1is the inverse Fourier transform (in k) of
m+(x,k) - 1 (resp. (m+(x,k)-1)2), and Bj,cj are the jth bound state and
norming constant for Q(x). Recall that, as in Section 2, Q(x) determines
m+(x,k)-

Solving (4.4) by iteration for H(x) leads directly to an estimate of

the form

(4.5) HH(*)! . < c(ayho(e=)!

L L
a Qa

with bounded constants C(a) for all a » 1, Thus Q(°*) € L; implies

1
H(*) € La.

play an important role in the discussion of Section 5, in which further s
properties of the solution constructed in Theorem 4.1 are deduced.

The second step in the proof of Theorem 4.1 concerns the behavior of the

.3
Fourier transform of 2ikR+(k,0) . e81k t for t > 0 and is crucial to the

analysis of Section 5 below.

3
(4.5) hix,t) =L [T 2ikr (k00 2B gy

is well-defined for t > 0 and satisfies:
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1

(i) h(s,t) € X13/4_5

with t * h(*,t) continuous in this topology

(ii) €% h(e,t) 6 C10,[,X,)

In fact, lim (1 + |x|)4h(x,t) =0 for t >0 fixed
h.adl o
( h(*,t) € L
iii s,t) €
) [ 1/4
(iv) all of the above hold for aiai h(x,t) provided we
(4.6) A« subtract U§(3r+s) from every lower index (the poly-
nomial weighting) i.e.

1

azaih(x,t) e X for every t > 0 fixed

13/4-8 - 3r+s
2
etc,
. 1
(v} h(x,t} * H{x) in x3_5 as t Vv 0
. -1/3 .
(vi) hix,t)= O(t Yy as t* +# for fixed x.

o133 if ¢ o0

(vii) hict + E,t) =
21
o(t ‘@) if c<¢O

as t*+ # (£ fixed).

Remark. (iv) implies that for 3r+s < 5,

r.s

atax h(x,t) 1is continuous,

Thus hi(x,t) 1is, for t > 0, a classical solution of the linear equation:

and (v) describes the sense in which the initial data is taken on.

-21-
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Proof of lemma 4.3. We first note that for potentials in Ll , the

associated reflection coefficiant R+(k,0) is C3 (see [7])s Given t > O

and x, both fixed and finite, we may pick a finite ko with

1
ko > (lflJ /2, which implies x + 12k%t > 0 for x| > x

12t 0

Integrate (4.5) by parts in |k| ? k bringing down a factor of x + 12k2t

0’
in the denominator, to show that the integral in (4.5) is well-defined for
any t > 0 and x fixed.

In order to verify the properties of h(x,t), we re-express (4.5), using
(4.3) above to replace 2ikR+(k,0) by the inverse Fourier transform of
H(x). We then have:

, .y 3
e21k(x-y)+81k td

(4.8) h(x,t) ="l FF ay ydk

-~ o

where the vy-intearal is absolutely convergent and, as remarked above, the
iterated integral converges., Thus h(x,t) is the convolution of H(x) with

the fundamental solution

. .3
1 f°° e21.l<(x-y)+81k t

(4.9) E(x-y,t) = - dk
- 3
) L9
T N N AP dx
=50
= (3t)-1/3 M(Lvi)
(3t)

where Ai(z) 1is the well-known Airy function.
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We shall make use of the fonllowing properties of Aai(z) (c.f. [20] for

example):
(a) Ai"(z) = z di(2z)
(b) |Ai(z)| < 1 for all real =z

(c) For z 2 0, RAi(z) 1is a non-negative, monotone decreasing
function of 2z with asymptotic rate of decay proportional to

1
2-1/4 R e-C' while Ai' decays like z% /4 e-§ where

’

L 2 2/3 z3/2

(d) As z + = Ai(z) is highly oscillatory with an algebraically

’
decaying envelope., In fact,
1 1 ~ 1
Ai(z) ~ — |z] /4{cos(T - m/8) + o(=)}
5 /2 z

where Z = 2/3 |z|3/2,

1
. 2 /a A 1
and Ai'(z) ~ {sin(z - m/4) + o(=)}.
n /2 z
Using (a), corresponding estimates on higher derivatives of Ai hold.

We now show that (4.6) holds:

I+ x4 hix £) |ax

a

(4.11)
oo =5 00 -
=70+ PP A E D ny)aylax
~50

a
where € = (3t)1/3 > 0, fixed
0 - - 1 A 3
< T0s kDA D A D way] + 13 Tau(E nyay [Hax
a -0 X

&5
E f»(1 + |x])13/4 {|h1(x,t)| + Ihz(x,t)|}dx.
a




Now we have

(4.12) €+ /7 (1 + IxD%In, oty |ax
a

< ST xD® [P Ai(Z)u(y) |dyax + [T [x )%™ (i (ZE)ucy) |dydx
a -0 a a

= [Pay [ax|ai(ZE)]| unyf+x® + [Tay [Sax|ai(ZL) [ Jucy)| (+[x)®
0 a

a y
< [Pluyy]dy « [T+ lxi)“Ai(fgi)dx + [Ty ¥y |ae [T1+]z]) %iczse)az |
~00 a a 0 L
< “'
We remark that these estimates give a bound on Ih_(°,t)!l for all

L _(a)
- . . a
a € 4 uniformly in O € t € T < ® Dy rescaling.

Similarly,
(4.13) f°(1+|x|)“|h2(x,t)|dx = f°(1+|x|)“-% fmlAi(fél)llu(y)|dydx
a X

a

= [ [%+x)%|ai(z) | |H(x-£2) |dzdx
a ==

< [ f0(1+|x-€z|)a|Ai(z)||H(x-€z)|dzdx (assuming w.%.0.9. a > 0)

a =%

< [Otaicz)| /7 (+lz)h®|u(z)|dzaz

-0 a-~-€z

< [O |ai(z)| » (1+]a-ez[)% az « wH(e)H
—00 L4(a)

< ® by the decay rate on Ai if a < 13/4.

Note that this is not uniform as € ¥ O.
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To estimate (1 + |x|)4h(x,t), we proceed as follows (0 < 6 < 1):

4 fx('l—5)1E Ai(i--y—

(4.14)  (1+]x)nex,t) = (#x]) Y )u(y)ray

s OelxDA L %Ai(%)ﬂ(y)dy.

x(1=8)
The second term goes to 0 as x + +®, since (1+|y|)%H(y) ¢ L' and

@ . " - Sx .
AL € L . In the first term, Yy € (1-8)x so 551 >-E—. By monotonicity,

-~

Ai(iél] < Ai(gi), which decays exponentially as x * +®. Thus

lim (1+|x|)4h(x,t) = 0 for every t > O.
Xr 4+

To obtain decay of h(x,t) as x * -*¢, we make a similar estimate:

1 1 -8 -
(a.15)  (+lx]) A ety | = Oslx]y A4 20 ’% ai (Zyucy)ay|

1
. (X~
+ (1+]x]) /hl fm - Al(—EZ)H(y)dy.
x(1-6)
As x * -®, the first term is O((1+|x|)-13/4) since H(*) € Ll while for
1 -
the latter term (1+|x]) /4|Ai(§EXJ] is bounded and H(*) € L'. Hence
1/ o
(1+]x|) 74 |n(x,t)| 6 L for every t > O.

The extension of these estimates to x and t derivatives, as well as
their continuity in t for t > 0, follows from the analyticity and
estimates on the Airy function.

Asymptotics in t are derived as follows:

1/3

(4.16) (36) "hix, ) = 7 ai(—XY Ju(y)ay.

- (3t)1/3

-25-
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Hence, as t * +# with x fixed (or even varying in a compact set),

(3t)"/3n(x,t) is bounded, thus h(x,t) = o(t~'/3) as t+ 4,

hict#,t) for ¢ < O:

ct
(417 136) Y Phiees 0] < [2 Ai(c—tf—;%)my)dyl
-0 (3t)

e 117 mi(EEEY Juyay|

ct+ (31:)1/3
2
t
AN
<[2 7 rplay + [0 (SR e lay
e ;t 3 (3t)
ct £
ct -4 2 4

<O+l O+lyDy [+(y)|ay
-0

2

+ sup IAi(————T7§JJ . fw JH(y)]ay

z<;_t (3t) c;t £

Now consider

i
=0(t'1/6) as t* # since Ai(x)~ |x| /a as x * -,

_1/
i.e. h{ct#,t) = 0(t “2) for c < O.

Note that this agrees with the alternate method of estimate, namely stationary

phase analysis of (4.5).

-26=
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For ¢ » 0, we have:

ct

(a.18) | 30)Phietssr| < [ 2 |aif
e (3t)

ctH -y
-——-1—/—5) | |1+(y)|ay

o7 as(EEE) ey lay

ct £ (31:)1/3
2
ct
2
< sup |Ai(—-577§Jl f [H(y)|dy
7)2 (3t) -

2

1 4

/- (1+|Y|)4|H(y)ldy =o(t ),
(14155 S

+

13/3

hence we have in this case h(ct#,t) = o(t ) as t * #,

To show that h(x,t) *+ H(x) in 5_5 as t+ 0, first we consider (as

usual € = (3t)1/3)
112
(4.19) [® “ai(y) [H(x-€y) - H(x))dy.
1
_E.yb

1
Now H(*) € L

4 implies that, since translation is continuous,

VH(x-€y) - HOOU | = o(leyl) as |ey|+ o.

L
4

1 1
/2 while the interval length is 2¢ 2,

On the given interval, lev] < ¢
Thus the expression (4.19) is o(1) as € * 0 as an element in L;.

Now we have:

1

I |

e /2
(4.20) hix,t) = [ Ai(y) H(x-€y)dy

+ [ TAi(y)H(x=ey)dy + [ Ai(y)H(x-€y)dy.

2 AR
/2 )
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4.

The first term is estimated in L; 5(a) by:

LI

/2 _
(a.21) [T € i | (+lx )28 [uix-ey) |dyax
a =»
14
w ~T /2 -8
C|€|1/8 [ € (1+IX|)3 |H(x-€y) |dydx
a ==

”n

clel® [Taslx)* [

a X+€

~n

1/ZIH(Z) |d2dx

"n

cle]V® hie)x " Cax IO
a L4(a)
= O(l€l1/8).

Now

Srr lAi(y)l(1+|xl)3-5|H(x-€Y)ldydx
a 11
T /2
<[ fAi(Y)'(1+‘X'€Y[)3-6(1+f€y[)3_6[H(x-€y)fdydx
a 11
T2

-8
< HH(*)) . f° |Ai(y)|(1+|ey|)3 dy
L 1

which tends to O exponentially fast as € ¥+ 0.

Thus
.1_1/

c /2
hix,t) » lim J Ai(y)H(x)dy = H(x)

e+v0 1
-.E[é

‘ . + 0.
in x3_6 as t 0

This completes the proof ot Lemma 4.3.
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Remark. If we assume more generally Q(x) € L;, then H(x) & L; and the
corresponding results for h(x,t) are:

R ®© «©
(4.21) (1) h(s,t) x<'1-3/4-6 nXx,n L1/4

for t > 0 fixed, with t * h(e,t) continuous for t » O.

_1
o(t /2) for c < 0

(ii) h(ct+§{,t) =
o(t-°-1/3) for ¢ > 0
(1ii) h(*,t) * H(*) 1in x&-1-6 as t * +° (f fixed).
1 o0

In particular, if Qe L with compact support, then h(x,t) 1is C for
t > 0, h decays faster than any power of x as x * +° for fixed t and
h decays faster than any power of t in moving frames with ¢ > 0 as
t * + (c.f. {6]). Better decay as x * =2 and in moving frames for
c < 0 1is related to additional smoothness of Q(x) and hence H(x).

Using Lemma 4.3 and the results of [7] (c.f. (2.17) above), it follows
that for every t > 0, a potential g(x,t) may be recovered via inverse
scattering starting from +® and solving to the left for every finite x.
Thus a generalized solution (in the sense of inverse scattering) exists and,
for each fixed t > 0, gq(+,t) € x;3/4_5. In the next section, we strengthen

this result to include smoothness and decay of the generalized solution.
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5, Reqularity and Decay of the Generalized Solution,

By analyzing the inverse scattering method of Neift and Trubowitz [7]
more closely, smoothness and spatial decay properties of the qgeneralized
solution constructed above will he obtained. The solution behaves quite
similarly to hi{x,t), as discussed in Lemma 4.3 above, except for the presence

of a finite sum of "soliton" terms., We shall prove the following theorem.

Theorem 5.1. The generalized solution q(x,t) constructed above satigfies:

1 - -
n X for t > 0

(3 N
(5.1) (1) q(*,t) € X13/4_5 4

and t * g(*,t) 1is continuous for t > O

1 -

f. .S .,
{ (1ii1) 3t3x q(*,t) € X

s+3r)r\x4_(3r+5)

13746 -( . >

{with continuity in t)

(iii)  q(x,t) » O(x)  in "13-5'

Our proof is essentially a parameterized (by t) version of the Deift-
Trubowitz approach to inverse scattering {71, sketched in Section 2 above. We
begin by rewriting the time-dependent analoques of the trace formula (2.14)
and the Volterra equation for m, {2.2) in terms of b(x,y,t), which is the
inverse Fourier transform of r (x,k,t)-1 with respect to k. Since m+-1
belongs to the Hardy space H2+, b{x,y,t) = 0 for y < 0. We have the
Volterra equation .

(5.2) hix,y,t) = [ qlz,t)dz + [Ydz [T aw q(w,t)blw,z,t), y 2> 0

X+Y 0 X+y~2

and the "trace formula”

-30-




(5.3) a(x,t) = hix,t) + 2 | hix+y,t)b(x,y,t)dy
0
o~
+ [ h(x+y,t)(b*b)(x,y,t)dy
0
3
- n -2B.x+88 ¢t
h(x,t) = h(x,t) - ) 4B.c,(0)e )
oy T3

where, as in Section 4 above, h(x,t) 1is the Fourier transform of

. gik3t L
21kR+(k,0)e (see (4.5) above). Note that the addition of the
exponential terms does not alter the results of Lemmas 4.2, 4.3, We regard

(5.2), (5.3) as the fundamental equations to be solved, and as in [7]), we

solve them by iteration to the right of a sufficiently large point (depending
on h(x,t)) and then argue that the solution continues to exist for all

finite x values, by using a local Lipschitz estimate.

One important step in this procedure is to obtain estimates on the
solution of (5.2) if we assume g(x,t) is known. We introduce auxiliary

. . 1
functions n(x,t), Y{(x,t) assuming g(°*,t) € X

1 for every t 2 0, as

follows:

0
n(x,t) = [ |aly,t)|dy
X

(5.4)

[Ziy-x)laty, ©)|ay.
X

Note that n,Y are non-increasing functions of x for each fixed t which

Y(x,t)

are finite for all x > - and that

[iy,exdy = 7 ay [T dz [a(z,0)]
X X y

(5.5)

= fmdzlq(z,t)I(Z-x) 2 v(x,t).
X

. , 9 )
Similarly, if 5z-q(~,t) (% x}, we may introduce
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{5.6) A(x,t)

j |'rt(Yrt)ldy
X
- 3
Mix,t) = i"(y-x)l;%(y.t)ldy.
With these functions thus defined, we prove the analogue of Lemma 2.3 of [7].
Lemma 5.2. If q(°*,t) € x: for every t 2 0 and g%i‘,t) e X: for every

t » 0, the integral equation (5.2) has a unique solution b(x,y,t)

satisfying:
(
. t
(5.7) (i) Ib(x,y,t)| < e *r Inix+y,t)
(ii) b(x,y,t) 1is absolutely continuous in x and y with
] t
lgtx,yet) + atxay, ©)] < 7% i e) « niesy,e)
] t
Igg(x,y,t) + q(x+y,t)| < ZeY(x' )n(x,t)n(x + y,t)
Y
(iii) b solves the 'wave equation'
2 32
’a_ib(lelt) - ‘a‘x—iy’ b(x,y,t) = q(x,t)b(x,y,t)
p 4
. ) + 39 +
with - 5;-b(x,0 ft) = = 3;-b(x,0 1) = qlx,t)
3 t
(iv) |§%<x,y,t)| <X ey, t) + ") o nixay, t)uix, )}
(v) 1f (a )jq(x t) € x1 for every t > 0 and 0 < j € &
x ' 1
then b has mixed deriatives in x and y up to order
. £+1 obeying estimates analogous to (ii) above.

Proof. (i), (ii) and (iii) are proved in Lemma 2.3 of [7], so we merely

sketch their proof.

Solving (5.2) by iteration with

(5.8) ‘ b(x,y,t) = ), b.(x,y,t)
j=o0

- -]
bo(x,Y:t) = f q(z,t)dz
X+y

y 00
b. . (x,y,t) = [Ydz [ dw q(w,t)b, (w,z,t)
Ehd 0 X+y- J
Y-2

-32-




leads to the inductive estimate ({7}

b
}bj(x'y,t)l < iliifﬁll_

which proves (i).

Differentiating (5.2) and using the above estimate, we have

3
(5.10) r I3z bxsy,t) + alx+y,t)]

g
9

< ¥ dz|q(x+y-z,t)|e
0

\

Y(x+y-z,t)

nix+y,t)

= | fy dz q(x+y-z,t)b(x+y-z,2z,t)|
0

n{x+y,t)

< eY(x't)n(xw,t) fqu(x+y—z,t)l
0
< eY(x't)n(x+y.t)n(x,t)

with a similar estimate for the y derivative.

(1ii) 1s a direct calculation,

To establish (iv), differentiate (5.2) with respect to

at

9 9
(5.11) 5% (x,y,t) = fw -} (z,t)dz
X+y

+ fwdz fm dw (%%{w,z,t)q(w,t) + b(w,z,t)%%{w,t)).

0 X+y-2
Again we solve by iteration, writing
( o
(5.12) | b _(x,y,t) = ] & (x,y,t)
t j=0 3

=~
]
4 (x:Y't) = I dz _‘q— (Zrt)
0 it
X+Y

0 X+y~-2

J 0 X+y-2

< + [Yaz /7 aw b(w,z,t) g—z (w,t)

G +1(x.y,t) = fydz fm dw q(w,t)cj(w,z,t).
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Y(w,t)

9
Then lco(x,y,t)l < Ax+y,t) + [Yaz f~ dwls%iw,t)le n{w+z,t)

0 X+y~2

t)
€ A(x+y,t) + n(x+y,t)u(x,t) * eY(x' ‘

and

. e en”

Icn(X.y.t)I < |Co(x,y,t)| —

(established just as before), which proves (iv). (v) is proved inductively
by applying the same ideas as in (ii) to higher derivatives. Namely, from the
relation

(5.13) (g;Jj+1b(x.y,t) + [%;)jQ(x+Y,t)

fy( J (q(x+y-z,t)b(x+y-z,2,t))dz
and estimates on derlvatlves of q and b of lower order, we can readily
estimate (%;)j+1b(x,y,t). This completes the proof of Lemma 5.2.
We shall also require estimates on the difference between the functions

b(j)(x,y,t), j = 1,2, corresponding to two potentials q(1),q(2). Define

8n(x,t) fwlq(1)(y,t) - q(Z)(y,z)ldy
X

(2)

(5.14) syix,t) = [ ty-x) g Ny, - 'y, 0)|ay
X
(2)
3

sacx, ey = [° 2 (y,t) - ey, )|y

X

Mep (2)

GH(XIt) = fm ‘x)'—g'_‘(y't) - 3 (Y.t)|dy

X

for notational ease. We have:

Lemma 5.3. (c.f. Lemma 2.4 of [7])) If q(1)(x,t), q(Z)(x,t) are two

potentials as in Lemma 5.2 above, then the corresponding solutions

M (x,y,t), b (x,y,t) of (5.2) satisfy:
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( (1) (2) Y0 iy (x t)eY Gt
(i) b tx,v.t) - b Ux,y,t)] € e 2% )

(5.15)

e Sn(x+y,t)

Y, (x,t)

(2)(x,v,t)| < e !

(ii) 6" (x,y,t) - b .« Sn(x+y,t)

Y.' (X;t)‘.'Yz(xrt)

+ e nz(x+y,t) * 8y(x,t)
(1) (2) Y, {x,t) Y. (x,t)
] 9
(iii) I—;F—(x.v.t) - :t (x,y,t)| < e (1+Y2(x,t)e
Y. (x,t)
X (x+y,t) + uz(x,t)e s On(x+y,t))

(1) (2)
9 )}
1De—xey,t) - —tx,y 0] <

(iv)

Y1(x:t) Yz(xrt)
e {8X(x+y,t) + e

[nz(x+y,t)6u(x,t)

Y (X,t) Y (x:t)
‘ + 8y (x,t)e (Xz(x+y,t) + e nz(x+y.t)u2(x,t))]}.

@«
Remark. (i) and (iii) provide L estimates in y while (ii) and (iv)

. lead to L! estimates for 0 <€ y £ o,

Proof of Lemma 5.3. Once again we sketch the first two estimates and refer to

7] for details. Subtracting (5.2) for b(2) from the equation for b(1) we

have
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(1) )

(5.16) pix.y,t) 2 b (x,y,t) - b (x,v,t)

= @Mz - o Pz, ez

X+y

s Yaz [ arla MV wer Mz 6) - 53w, z,8))

0 X+y-2
v @ Mo - a@ e Pz, 00,
-]
Solving for p = z pj(x,y,t) leads to the usual inductive estimate
j=0
(v, tx,£))?
(5.17) |Dj(x,y,t)| < |po(x,y,t)| C—r
where
(5.18) o (x,y,t) = [ @ "z, 0) - q'?(z,t))42
xX+y
v [Yaz [® aw@Mw,6) - ¢ e P w2, 0.
0 X+y-2
Thus
|°0(x,y,t)| < fn Iq“)(z,t) - q(z)(z,t)ldz
X+y
Y. (w,t)
+ [Yaz f” dwlq(1)(w,t) - q(2)(w,t)|e n,(wez, ).

o] X4y -2

(i) follows by interchanging the order in the double integral and integrating
n2(w+z,t) while (ii) comes from using the monotonicity of n2 which yields
the nz(x+y,t) factor.

(iii) and (iv) are derived similarly. Differentiating (5.16) with

respect to t gives
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(1) (2) (1) (2)
ab ® 3 3
(5.19)  SFr—(x,y,t) - —e—(x,y,8) = [ (Sp—(z,t) - Z—(z,1))
X+y
(1)
w20 - b (2,0

at

0 x+y-z (1) ab(1) 3 (2)
+q (w,t) [T(wlzrt) - T(wlzlt)]

3 (1) 3 (2)

+ (Fe—tw,e) - 2 (w,t))b 2

)(wlzrt)

(2)

1 2
s @M w0 - aPw, e —(w,z, 0]
ab(1) ab(2)
Solving iteratively for 3¢ " 3c again leads to an inductive estimate

involving (Y1(x,t))3/jl, but now the leading term is

e agt) e
[ (p—tz,0) - (2, t))az

X+y

agt ! (2)

- Tt"—(wrt)[b(1)(wlzrt) - b (W,Z,t)]
+ fydz f daw

0 X+y~-2 (1) (2)
)b(Z)(W.z,t)

(1)

+ (q (w,t) - q(2)

3
(W.t))jb—t—-—(W.z,t) .

Using (1), (ii) and the estimates of Lemma 5.2, depending on whether we
integrate out the bounds for the Db's or take their suprema over 2z , we

obtain (i1i) and (iv) above. This proves the lemma.
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The above lemmas will be used to show, in a manner analogous to [7], that
the mapping
(5.20) q |* ¥(q)
given by finding b from g wvia (5.2) and then defining ¢(q) from b via
(5.3) is a contraction on a suitable ball in a Banach space. In (7], this space
is {Q(x) : fmlxllQ(x)Idx < 1} where a is chosen so that fw|x||H(x)|dx is
sufficientlyasmall (recall H(x) 1is the inverse Fourier tran:form of
2ikR+(k,0)). Since we are interested in smoothness and decay properties of
our generalized solution, we shall include these in our Banach space.

Before discussing the mapping q l* ¢(q) more fully, we require some
estimates on the relation (5.3), where we regard b(x,y,t) as known.
Lemma 5.4. Suppose functions Y(x,t), n(x,t}), A(x,t), u(x,t) exist

satisfying (5.5) and its analogue for A,u and such that the estimates (5.7) (i)

and (iv) hold. Then if qg(x,t) is given by (5.3), we have, for every 4 > 0

/ ~
(se2t) [ (1) O LI R IR 7S T A AL LI IO Y ,
La(M) LQ(M)
(i1) Ig(e,t)h < (1 + y(x«n,t)eY(M’t))2 (e, )l w
L, (M) L (M)
(1i1) ugi(-,t)u < (1+Y(M,t)eY(M’t))2 {“-aﬂ(nt)ll
t L‘I(M) it L1(M)
ﬁ a a
+ 20, 0)e Y M B R ey }
L“(M)
(iv) l!i;g('.t)" < (1 + Y(M,t)e\((M’t))2 uirl(-,t)u
P L1(M) Ix L‘(M)
Q Qa
L v Oevin, e My G, e "M Lo
L (M)
Q2
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i
i
i
i
‘ Proof of Lemma 5.4. From (5.3),
~ 0 A 00~
qlx,t) = hix,t) + 2 |/ h(x+y,t)b(x,y,t)dy + [ hix+y,t)(b*b)(x,y,t)dy.
0 0
Thus
(5.22)  [TC+]x%latx, ) ]ax < [T(+]x]) ¥ Rix, ) |ax
M M
+ [TO+xD%2 [ Bix4y, t)b(x,y,t)dy|dx
M 0
v [TO+]x|* ) [T B(xzey,£) (b*p) (x,y, t)dy|dx
M 0
< Uh(e,t) v 2 [TO+xD® TRy e e % P n(xey, £)aydx
L_(M) M 0
x
00 o o A
+ [T0xD® R x4y, t) | [b*b(x,y, t) |dydx
M 0
< Uh(e,t)h ] + 2 fwn(x,t)eY(x't) /m(1+1x+y1)afg(x+y,c)fdydx
L (M) M 0
a
' + me(x,t)n(x,t)ezY(x’t) f°(1+|x+y|)alg(x+y,t)|dydx
M 0
< Un(s,t)t {r + 2Y(M,t)eY(M’t) + Y2(M,t)e27(M’t)},
La(M)
Similarly,
(5.23 Ig(e, 000 = sup (1+]x])%alx, )]
L (M)  MSx€®
a
< sup (1+|x|)a|ﬁ(x,t)| + 2 sup (1+|x|)a . waG(x+y,t)[|b(x,y,t)|dy
M < MEx <@ 0

3 00~
+ sup (1 + [x)Y [ intxsy, ) || (b*b) | (x,y,t)dy
MS x € 0

-39-




Y(x,t)

S Ih(e,e)0
La(M) MC €= OSy<®

+ 2 sup (1+|x|)a sup lg(x+y,t)| * Y(x,t)e

a ~ 2 2Y(x, t
+ sup (1 + lxl) » sup |hix+v,t)| * Y (x,t)e Yix,t)
MEy€® NSy

< l‘}:(‘,t)u - (1+Y(x,t)eY(x't))2.
LG(M)

]
To estimate 3%’ we note that

(5.24) g-‘tl(x,t) =-g—:(x,t) +2 7 %‘é(xW,t)b(x,y,t)dy
0

~

3
+ [T Fhx4y, £) (b*b) (x,y, )y
0
+ 2 fw ;(xw,t)g%(x,y,t)dy + fm ﬁ'(x+y,t) -;E(b*b)(x,y.t)dy.
0 0

h . db .
The It terms are estimated as above, and the TS terms are easily seen to

provide the remaining terms in the estimate (5.21)(iii) above.

d
Finally, we consider 331

~ ~

3 3 3
(5.25)  33(x,t) =£(x,t) +2 I”a—z(xw,t)b(x,y,t)dv
0

~

+ fw %£(x+v,t)(b*h)(x,v,t)dv
0

~ 3b
+ 2 f“ hx+y,t) 3=(x,y,t)dy
0

~ 3
+ 2 7 Rixey,t) (b * r,g)u,y,t)czy.
0

~40-




ah . .
Again the F;(x,t) terms lead to estimates with a factor

M
(1 + Y(M,t)eY( 't 2.

)
The remaining terms (those involving ggd lead to bounds as follows:
(5.26) [ (i+lx|) [ Ih(x+y, )| l5=(x,y, £) |dydx

M 0

00 00 ~ 8
+f (1+|x|)a [ Inix+y, )] b * F;(x,y,t)ldydx
M 0

”n

POz 7 Rixey, 63 | {]a x4y, t) |
M 0

+ eY(x't)n(x+y,t)n(x.t)}dydx * (1 4+ sup O(x,y,t)l)
y
< [T elxD® sup Thixey, )1 [ [atz,0)]az
M K y<o %
el BB emix, 63 0 (T (x,t)e’ K0T ax
r a ~ Y(x,t)
= [ (14]x]) sup |hix+y,t)] ¢ n(x,t) (147 (x,t)e )
M X K
« Gaix,tre By
< the, o (e ot My im0 ™ oy, 0.
L
a

This completes the proof of Lemma 5.4.
We shall need estimates on the difference hetween two potentials

q(1)(x),q(2)(x) given by (5.3) from b(1),h(2) respectively.

Lemma 5.5. lLet b(1),b(2) be as in Lemma 5.4 above and satisfy the estimates

(5.15) (i)-(iv). Then if q{3) are given by (5.3) with b = b3}, we have:

-41-




(5.27) | (i) e ey - a@een < caRe,en | Sy,
La(M) La(M)
iy 1MV e, < @ P Lo o < ane,en o sy,
L L (M)
a a
(1) (2) ~
3 aq . aq - ah .
(1ii) "—5;——( fE) - 57— R3] 1 < c1n5;( e . Sy (M, t)
L (M) L (M)
{ o a
+ (CluM,t) * Nhie, )t +C_ Sn(M,t) +C, 85Y(M,t))
2 3 4
L' (M)
a
(1) (2) ~
. dq . 9q . dh
(iv) “Tx——( , t) -“-a—x——( el 1 < C“’s‘;( AL 1 Sy (M, t)
L' (M) L' (M)
a a
+ csu“ﬁ(-,t)u - o Sy(M,t)
\ LG(M)

where Cj' 3j

XQ(M,t) L =1,2

1,***,5 depend only on YQ(M,t), nz(M,t), uQ(M,t),

Proof. From (5.3), we have

(5.28) q(1)(x,t) - q(Z)(x,t) = 2 f” g(x+v,t){2(b(1)(x,y,t) - b(Z)(x,y,t)
0
et W p J B2 L 20y et ay
whereupon
(5.20) Mg (e, 6y - '@, e ! < [ThasxD® fwlﬁ(x+y,t)|{2|b(‘)- b2
L (M) M 0
Q
+ 6 <M L2 4 y2) | avax
-~ . Y1(x’t) YZ(x't)
< 2Lt [ e (147, (x, t)e ¥8n(x,t)
L (M) M
a
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re

~ 71(xlt)
+ Ih(e, el (e n

1
LG(M) M
YZ(Xpt) Y, (x,t)

+ e nz(x,t))e

- Y, (M, t)
< fth(e,t)! ; e (1+Y2
Lu(M)

Y1(M,t) Y, (M, t)

(e n1(M,t) + e n
L--]
The same idea for Lh(M) leads to (ii

respect to t, we have:

(1) 3q?)
(5.30) Mgl ,8) ~ 5 )

+

2 [T alx® [T [hexey ) [
M 0

(1) b(2

+ !(b(1)— p(2)y « (by + by

o oM 4 ]Hayax < u%%(

where

o
1]

L 1
= L{llbi Yixi0ot) - b (x

(1) (2)

+ "b (x,.'t)-h

Y, (M, t) Y.(M,t)

< e ! (1#Y2(M,t)e

Y (M, t)
+ YZ(M,t)e

Y,(Mltl)

+e (1o (M, t)e 2

(1+Y2(x,t)e

W{Su(M,t) + e

Y. (M, t)

1(x,t)

Y (XIt)
¥ni(x,t)dx

Y. (M,t)
(M, t)e wy(m, )2 +

2(M,t))].

) above. Differentiating (5.28) with

<(my e B,

Ih(M) Lh(M)

(1_ (]

LN t

(1) (2)
t-ht)

"y + |tb

o, )l 1 e C + zll'f;(nt)ll *D
La(M) ya(M)

r.rt)" m(1+“b(1)+ b(z)(‘(r'lt)“

1
L L1

(x,*,t)0 °°ﬂb(” + b(z)(x,',t)" }ax
L t t L‘

Y, (M, t)
)(1+Y1(M,t)e

Y (M, t)
YZ(M,t)GT\(M.t)}

)8y (M, t)
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; YI(M.t) Y. (M, t)

i (e WM E) (1 + Y (M, t)e )
i 1 1

i

Yz(M.t) Y2(M.t)
+ e B_o(M,t)(1+Y_ (M, t)e )e
2 2
H Differentiating (5.28) with respect to x, we have:
(1) (2) o A
5.3 B - Bix,0 22 [T Ly 0w - 0Py 000y
0

. o g%(xw,t)[bm, (V) (2, (2
0

v 7 Ry, 02082 6 ) L 2™ p 1) L p(2)s (2D )4y,
0 X X X X

Estimating as in Lemma 5.4(iv), we obtain

(1) (2)
3q . g . dh
(5.32) '-3;——( L) ~ —3;-—4 :t)'L1(M) < C'ﬁ;(x’t)nLI(M)
a a

. 2|;(-,t)l . f“dx fcody(lb(1)_b)((2)l + Ib(1)* b)((1) _ b(z)* b)((Z)l)
LMM 0 X

Cole,on o wathe,or,  [axp{MNe e -
X L (M) L (M) M
a a
) _ ., (1) (2)
bx (x,°,t)l 1(1 + "b(x,',t) + b(x,-,t)l 1)
L L
s 1! 6! Py, 00 Y Jp Pk, 000 )
%X X 1 1
L L
anh ~
< cl-a—x-(°,t)l ; + 2Ehn(n, )0 §Y(M, t)
L' (M) L (M)
a a
where
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, Y Y Y Y Yo
Ez 1+ Y,e 'y Y e 2]{(1+Y1e 1)(1*Y2e 2) YR 21

Y. Y

i 2
+ e (1+Y2e )(Y1(1+Y1) + Y2(1+Y2))

(for notational ease we have omitted the arguments of Y1,Y2 which are

M,t). This follows from a straightforward estimate on b;1) - biz)

and
completes the proof of the lemma.

We are now ready to prove Theorem 5.1, as we have in fact derived
Lipschitz estimates for the mapping g [* ¢(q), whose Lipschitz constants

depend linearly on various norms of h(x,t).

Proof of Theorem 5.1. Let J be a compact subinterval of {t: 0 < t < =},

We define the Banach spaces By of functions via the norm

sup ) {naiaiq(-,t)u

IHalll,
teJ s+3r<é6 L

3

13/4—5-(3r+s)/2(M)

+

19535q (-, tl }
t x Lm M)
4~(3r+s)/2
where M will be suitably chosen, as discussed below.
By the estimates of the above lemmas and their direct extensions to the
higher order derivatives contained in the norm above, the mapping q P ¢(q)
maps B into itself tor every M. Moreover, if we consider two functions

M

949, in the unit ball of By {which therefore bounds sup Yj(M,t), nj(M,t),
ted

M M . . . i
AF 't), u? rt) by 1), then it is clear that an estimate of the form

] ]
o) = otapilly, < xlila, - a,lll,l1Fl1],

holds, where X > 1 1is an absolute constant (involving the maximum of

. ~ 1 . .
C,D,E as above). Thus choosing M so that |||h|||M <xr 0 is a strict
contraction ani h belongs to the unit ball in By+ Hence on the interval

[M,”), equations (%.2), (5.3) have a unique solution q(x,t).
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i To complete the proof of the Theorem 5., we must show that this solution
! extends to all finite x and that as t ¥+ 0, q(x,t) * Q(x) in X;_a. The
continuation argument follows that of {7] and proceeds as follows:

Suppose that a solution of (5.2), (5.3) in B, exists only up to some
finite value of M - i.e. M*, the infimum of all M for which a solution
exists for x » M and belongs to B, is finite, Then for M= M*+ €, we
have a solution q(*,t) € B_ for every €& > 0. There is a corresponding
b(x,y.,t) wvia (5.2). Exten: b(x,y,t) for x » M* - £ as the constant (in
x) function b(g,y,t). Since H(x,t) exists for all x, we can consider
(5.2), (5.3) on the x-interval (M*- e,M*+ €). By arguing as in the above

lemmas, it is easy to show that our system has a unique solution for

b(x,yY,t) in a ball relative to b(ﬁ,y,t) in a space with norm:

\' Y AS8,0
e, R COCMEIERI LI T
X6[M -€,M +£] 3r+s+0<6 L, ) L, )
teJ r<1 Y Y

for & sufficiently small. The corresponding q(x,t) exists for

*
Xx M - € and belongs to B , which contradicts the definition of

*
M -€
* *
M. Thus M = -,

The proof that q(x,t) *+ Q(x) 1in L;-6(M) tollows for M sufficiently
large by iteration and for all semi-infinite intervals by continuation as
above. This completes the proof of Theorem 5.1.

We remark that analogous results hold for initial data in L; with the

same proofs. Note also that, as an immediate corollary of Theorem 5.1, we

1

have the result that with L initial data of compact support, the solution

o0
is C for t > 0 (see [6]).
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6. Verification of the KAV Equation,

In order to prove that our generalized solution constructed above is
indeed a solution of the K4V equation, it is sufficient, as remarked by Tanaka
[19], to prove the following result

Theorem 6.1. b, (x,y,t) + b (x,y,t) - 3q(x,t)b (x,y,t) = O.

XXX
Proof. The idea is to show, using the Schrddinger equation and the trace
formula, that b, + b <x and 3q b, satisfy the same linear integral

equation, which implies they are equal.

Differentiating the Volterra equation

Q0 Y 00
(6.1) b(x,y,t) = [ q(w,t)aw + [¥ [ q(w,t)b(w,z,t)dwdz
X+y 0 x+y-z
we obtain:

00
(6.2) bt(XrYIt) + bxxx(XIYIt) = f (qt(wrt) + qu(w,t))dw

X+yY

Y [ et b wzt) 4 b (w,2,t))
0 X+y-2
+ (qt(W.t) + qu(w,t))b(mz.t) + 3(qw(W.t)bw(W.z,t))w]dwdz-

The trace formula
-]

(6¢3) q(x,t) = hix,t) + 2 | h(x+y,t)b(x,y,t)dy
0

+ fmh(x+y,t) fyb(x,y-z,t)b(x,z,t)dzdy
0 0

when differentiated (recalling h, + hxxx = 0) yields
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P'—_—'_—-—m"w o

(6.4) q(x,t) +q (x,t) = 2 (f)"’ H(x4y,€)(b_(X,¥,€) + b (x,y,t))dy

+2 [Thixeay,e) o [Yibtx,y-z, ) (b (x,y,8) + b (x,y,t))
0 0 XXX

+ 3 bx(x,y-z,t)bxx(x,y,t)]dzdy

9 ® Y
+ 6w {/ ' h_(x+y,t)[b_(x,y,t) + [Tb(x,y-2z,t)b _(x,z,t)dz] * dyl.
X 'y x x 0 X
The estimates of Section 5 ensure the convergence of all these integrals.
Combining (6.2), (6.4), we obtain the following integral equation for

Vi(x,y,t) = bt(lert) + bxxx(lert)=

V(x,y,t) =2 [° [(h * Y)(w,t) + (h * (¥ * b)) (w,t)

(6.5) x4y

+ 3(h * (bw * bww))(w,t) + 3(hw * (bw + b * bw))w(w,t)]dw

+

fY fm [q(w,t)¥{w,z,t) + 3(qw(wrt)bw(wrzrt))w
0 x+y=-2z

+ 2 b(w,z,t) {(h * Y)(w,t) + (h * (Y * b))(w,t)

+

3(h * (bw * bww))(w,t) + 3(hw * (bw + b * bw))w(w,t)}]dez.

Here we use * to denote both types of convolutions in (6.4) above. Thus it

suffices to show that 3 q(x,t) * bx(x,y,t) is also a solution of (6.5).

Making this substitution and dividing by 3, we wish to show:
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[[RaM

2 /7 ((h % ab)(w,t) + (h * (ab, * b))(w,t)

q(x,t)bx(x'Y,t)
X+y

(6.6)

+ (h * (b * b)) (wet) + (h, * (b, + b * bw))w(w,t)]dw

s Y7 @Pwtib wz,t) + (q, ()b (w,zit))
0 X+y-2

+ (w,z,£){(h * gb )(w,t) + (R * (qb_ * b})(w,t)

+ (h * (b *Db ))wt) + (h * (b, + b * bw))w(W.t)}]dwdz

From here on, the proof is a matter of direct calculation, using the following

ingredients:
(i) If o(x,y,t) €C°, ¢ >0 as x> =, then
¢(le't) = ¢(X+Y'01t) + jy F (d’ -~ ¢ )(w,Z,t)dwdz
wWW wzZ
0 x+y~z
(ii) bww(w,z,t) = q(w,t)b(w,z,t) + bwz(w,z,t)
(6.7)
and bw(W,O,t) = bz(w,o,t) = ~q(w,t)
L. y d Y
(iii) [Ya(z)v_(y-z)dz = -uly)v(0) + =={ [* u(z)v(y-z)dz}.
L 0 y 5

Using (6.7)(1) to re-express the left-hand side of (6.6) as

(6.8) ixey,t) + [ [(@(w,t)b(w,z,€)) = (a(w,t)blw,z,t))  ]dwdz
0 x+y~-2
and using (6.7)(ii) to eliminate b, terms, (6.6) is equivalent to:
rd
(6.9) I(qq) = I(p)

where, for any function g(w,t), we define

(6.10) Hgw,e)) = [° gew,tyaw + [¥ [T g(w,t)b(w,z,t)dwdz,

X+y 0 x+y-2z

and where p(w,t) 1is given by

Q?
a




e

(6.11)

pw,t) = q(w,t){(h * bw)(wlt) + (hw * b)(w,t)
+ 2(h * p * bw)(w,t) +(h *Db* b){(w,t)}

+ (hww * b){(w,t) + (hw * (bwz)(w,t)

*

+ (h (b * bw))(w,t) +(h * (b *Db ))wt)

+ (hw * bw * bw)(w,t) + (h * bw * bwz)(w,t).

Clearly (6.9) holds if qq,, = p. Now, the terms in p which do not contain
the factor q may be grouped pairwise. For the first pair, we have:

(6.12) éalhww(w+y.t)bw(w.y,t) + hw(w+y,t)bwy(W.y,t)ldy

y=®
= hw(w+y,t)bw(w,y,t) = hw(w,t)q(w,t)-
y=0
The second pair is:

* . (Y -
£ th, (WY, t) é b(w,z,t)b_(w,y~z,t)dz

(6.13)

+ hw(w+y.t) fy b(w,z,t)bwy(w,y-z,t)dz]dy
0

© y
£ (h, (wty, t) é b(w,z,t)bw(w,y-z,t)dz)ydy

+ [Th, (wey, £)b(w, v, £)q (v, £)dy
0

L}

q(w,t) fahw(ww.t)b(w,y,t)dy by (6.7)(iii).
0

A similar reduction on the last pair of terms in p implies

(6.14) p(w,t) = q(w,t) | hw(w,t) + 2(h * bw)(w,t) + 2(hw * b)(w,t)

+ 2(h * b * bw)(w,t) + (hw * (b * b))(w,t)]
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which by the trace formula (6.3) implies p =g q,. Thus b, + b .. - 3 gb,

= 0, and our generalized solution of the KdV equation is indeed a bona fide

solution.
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